A Chart of Backward Errors for Singly and Doubly Structured Eigenvalue Problems

نویسنده

  • Françoise Tisseur
چکیده

We present a chart of structured backward errors for approximate eigenpairs of singly and doubly structured eigenvalue problems. We aim to give, wherever possible, formulae that are inexpensive to compute so that they can be used routinely in practice. We identify a number of problems for which the structured backward error is within a factor √ 2 of the unstructured backward error. This paper collects, unifies, and extends existing work on this subject.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backward errors and pseudospectra for structured nonlinear eigenvalue problems

Minimal structured perturbations are constructed such that an approximate eigenpair of a nonlinear eigenvalue problem in homogeneous form is an exact eigenpair of an appropriately perturbed nonlinear matrix function. Structured and unstructured backward errors are compared. These results extend previous results for (structured) matrix polynomials to more general functions. Structured and unstru...

متن کامل

Structured QR algorithms for Hamiltonian symmetric matrices

Efficient, backward-stable, doubly structure-preserving algorithms for the Hamiltonian symmetric and skew-symmetric eigenvalue problems are developed. Numerical experiments confirm the theoretical properties of the algorithms. Also developed are doubly structure-preserving Lanczos processes for Hamiltonian symmetric and skew-symmetric matrices.

متن کامل

Ela Structured Qr Algorithms for Hamiltonian Symmetric Matrices

Efficient, backward-stable, doubly structure-preserving algorithms for the Hamiltonian symmetric and skew-symmetric eigenvalue problems are developed. Numerical experiments confirm the theoretical properties of the algorithms. Also developed are doubly structure-preserving Lanczos processes for Hamiltonian symmetric and skew-symmetric matrices.

متن کامل

Structured Backward Error and Condition of Generalized Eigenvalue Problems

Backward errors and condition numbers are defined and evaluated for eigenvalues and eigenvectors of generalized eigenvalue problems. Both normwise and componentwise measures are used. Unstructured problems are considered first, and then the basic definitions are extended so that linear structure in the coefficient matrices (for example, Hermitian, Toeplitz, Hamiltonian, or band structure) is pr...

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2003